metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6⋊5D4, C23⋊2D6, (C2×C4)⋊2D6, (C2×C6)⋊2D4, C3⋊2C22≀C2, (C2×D4)⋊3S3, (C6×D4)⋊8C2, D6⋊C4⋊14C2, C2.25(S3×D4), C6.49(C2×D4), (S3×C23)⋊2C2, (C2×C12)⋊7C22, C22⋊3(C3⋊D4), (C2×C6).52C23, (C22×C6)⋊3C22, C6.D4⋊10C2, (C2×Dic3)⋊2C22, C22.59(C22×S3), (C22×S3).25C22, (C2×C3⋊D4)⋊4C2, C2.13(C2×C3⋊D4), SmallGroup(96,144)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23⋊2D6
G = < a,b,c,d,e | a2=b2=c2=d6=e2=1, ab=ba, dad-1=ac=ca, eae=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 354 in 130 conjugacy classes, 37 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C2×D4, C2×D4, C24, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22≀C2, D6⋊C4, C6.D4, C2×C3⋊D4, C6×D4, S3×C23, C23⋊2D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C22≀C2, S3×D4, C2×C3⋊D4, C23⋊2D6
Character table of C23⋊2D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 2 | 4 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | √-3 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | -√-3 | √-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | √-3 | -√-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ22 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -√-3 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
(1 17)(2 15)(3 13)(4 19)(5 23)(6 21)(7 16)(8 14)(9 18)(10 20)(11 24)(12 22)
(1 4)(2 5)(3 6)(7 11)(8 12)(9 10)(13 21)(14 22)(15 23)(16 24)(17 19)(18 20)
(1 8)(2 9)(3 7)(4 12)(5 10)(6 11)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 14)(15 18)(16 17)(19 24)(20 23)(21 22)
G:=sub<Sym(24)| (1,17)(2,15)(3,13)(4,19)(5,23)(6,21)(7,16)(8,14)(9,18)(10,20)(11,24)(12,22), (1,4)(2,5)(3,6)(7,11)(8,12)(9,10)(13,21)(14,22)(15,23)(16,24)(17,19)(18,20), (1,8)(2,9)(3,7)(4,12)(5,10)(6,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,14)(15,18)(16,17)(19,24)(20,23)(21,22)>;
G:=Group( (1,17)(2,15)(3,13)(4,19)(5,23)(6,21)(7,16)(8,14)(9,18)(10,20)(11,24)(12,22), (1,4)(2,5)(3,6)(7,11)(8,12)(9,10)(13,21)(14,22)(15,23)(16,24)(17,19)(18,20), (1,8)(2,9)(3,7)(4,12)(5,10)(6,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,14)(15,18)(16,17)(19,24)(20,23)(21,22) );
G=PermutationGroup([[(1,17),(2,15),(3,13),(4,19),(5,23),(6,21),(7,16),(8,14),(9,18),(10,20),(11,24),(12,22)], [(1,4),(2,5),(3,6),(7,11),(8,12),(9,10),(13,21),(14,22),(15,23),(16,24),(17,19),(18,20)], [(1,8),(2,9),(3,7),(4,12),(5,10),(6,11),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,14),(15,18),(16,17),(19,24),(20,23),(21,22)]])
G:=TransitiveGroup(24,145);
C23⋊2D6 is a maximal subgroup of
C3⋊C2≀C4 C23.3D12 C23⋊D12 2+ 1+4⋊7S3 C42⋊14D6 D12⋊23D4 C42⋊18D6 C42⋊19D6 S3×C22≀C2 C24⋊7D6 C24⋊8D6 C24.44D6 C24.45D6 C24⋊9D6 C6.372+ 1+4 C4⋊C4⋊21D6 C6.382+ 1+4 D12⋊19D4 C6.402+ 1+4 D12⋊20D4 C6.422+ 1+4 C6.462+ 1+4 C6.482+ 1+4 C6.1202+ 1+4 C4⋊C4⋊28D6 C6.612+ 1+4 C6.1222+ 1+4 C6.622+ 1+4 C6.682+ 1+4 C42⋊22D6 C42⋊23D6 C42⋊24D6 C42⋊28D6 D12⋊11D4 C42⋊30D6 D4×C3⋊D4 C24⋊12D6 (C2×D4)⋊43D6 C6.1452+ 1+4 C6.1462+ 1+4 C23⋊2D18 D6⋊4D12 C62⋊4D4 C62⋊8D4 C62.125C23 C62⋊13D4 D6⋊S4 D6⋊4D20 C15⋊C22≀C2 D30⋊18D4 D30⋊8D4 D30⋊17D4
C23⋊2D6 is a maximal quotient of
C24.57D6 C23⋊2Dic6 C24.59D6 C24.23D6 C24.25D6 C23⋊3D12 (C2×Dic3)⋊Q8 D6⋊C4⋊6C4 (C2×C4)⋊3D12 C24⋊6D6 D12⋊16D4 D12⋊17D4 Dic6⋊17D4 D12.36D4 D12.37D4 Dic6.37D4 C22⋊C4⋊D6 C42⋊7D6 D12.14D4 C42⋊8D6 D12.15D4 D12⋊D4 Dic6⋊D4 D6⋊6SD16 D6⋊8SD16 D12⋊7D4 Dic6.16D4 D6⋊5Q16 D12.17D4 D12⋊18D4 D12.38D4 D12.39D4 D12.40D4 C24.29D6 C24.32D6 C23⋊2D18 D6⋊4D12 C62⋊4D4 C62⋊8D4 C62.125C23 C62⋊13D4 D6⋊4D20 C15⋊C22≀C2 D30⋊18D4 D30⋊8D4 D30⋊17D4
Matrix representation of C23⋊2D6 ►in GL4(𝔽13) generated by
2 | 4 | 0 | 0 |
9 | 11 | 0 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 9 | 0 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
1 | 1 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 12 |
G:=sub<GL(4,GF(13))| [2,9,0,0,4,11,0,0,0,0,0,9,0,0,3,0],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[1,12,0,0,1,0,0,0,0,0,12,0,0,0,0,1],[1,0,0,0,1,12,0,0,0,0,1,0,0,0,0,12] >;
C23⋊2D6 in GAP, Magma, Sage, TeX
C_2^3\rtimes_2D_6
% in TeX
G:=Group("C2^3:2D6");
// GroupNames label
G:=SmallGroup(96,144);
// by ID
G=gap.SmallGroup(96,144);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,188,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^6=e^2=1,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export